 Basic Course Information
 MATH 2414 Course Description: Differentiation and integration of transcendental functions; parametric equations and polar coordinates; techniques of integration; sequences and series; improper integrals.
 Any required prerequisites: Students must make a C or better in MATH 2413.
 Required Grade for Enrolling in the Next Course in this Sequence: A grade of C in this course is required to advance to MATH 2415.
 Advancement Via Individual Determination (AVID) learning strategies will be implemented periodically throughout the course.
 This course has been designed to prepare students whose chosen field of study requires a STEM mathematical pathway.
 Project Base Learning (PBL) is an active learning method in which students gain knowledge and skill by investigating and responding to a tangible, engaging and complex question, problem or challenge.
 Online course content is administered through the college’s learning management system (LMS), Moodle, also called eCampus. A link to eCampus can be found on mywtc.edu and to Moodle (the big M with a graduation cap) on the college’s home page, www.wtc.edu.
 Student Learning Outcomes
 Use the concepts of definite integrals to solve problems involving area, volume, work, and other physical applications.
 Use substitution, integration by parts, trigonometric substitution, partial fractions, and tables of antiderivatives to evaluate definite and indefinite integrals.
 Define an improper integral.
 Apply the concepts of limits, convergence, and divergence to evaluate some classes of improper integrals.
 Determine convergence or divergence of sequences and series.
 Use Taylor and MacLaurin series to represent functions.
 Use Taylor and MacLaurin series to integrate functions not integrable by conventional methods.
 Use the concept of polar coordinates to find areas, lengths of curves, and representations of conic sections.
 Course Requirements
 Major Requirements—All major requirements must be proctored.
 InClass Participation
 Unit Exams
 Midterm Exam
 Final Exam
 Minor Requirements
 Binder Checks
 Homework
 Quizzes
 Projects
 Testing Requirements
 Students are NOT allowed to use their book or notes of any kind while completing major requirements.
 Information on Books and Other Course Materials
 Required Book: Calculus (Early Transcendentals) 2nd Edition by William Briggs and Lyle Cochran. Book ISBN: 9780321954428
 Required Access Code: Online Students must purchase a MyMathLab Access Code. This code can be purchased stand alone or bundled with the textbook. MyMathLab stand alone (provides ebook) ISBN: 0321653998. A la carte version w/MML ISBN: 9780321965165.
 Calculators: A TI84 or higher is strongly recommended. The TI89, TIInspire with CAS or any other calculator with CAS capability are not permitted.
 Other Policies, Procedures and important dates. Please refer to the WTC Catalog for the following:
 Campus Calendar
 Final exam schedule
 How to drop a class.
 Withdrawal information
 Student Conduct/Academic Integrity
 Class Attendance
 Students with disabilities
 Planned Course of Study
Chapters and Sections to be covered throughout the semester 
Chapter 6—Applications of Integration 
6.1 Velocity and Net Change
6.2 Regions Between Curves
6.3 Volume by Slicing
6.4 Volume by Shells
6.5 Length of Curves
6.6 Surface Area
6.7 Physical Applications
6.8 Logarithmic and Exponential Functions Revisited
6.9 Exponential Models
6.10 Hyperbolic Functions 
Chapter 7—Logarithmic and Exponential Functions 
7.1 Basic Approaches
7.2 Integration by Parts
7.3 Trigonometric Integrals
7.4 Trigonometric Substitutions
7.5 Partial Fractions
7.6 Other Integration Strategies
7.7 Numerical Integration
7.8 Improper Integrals
7.9 Introduction to Differential Equations 
Chapter 8—Integration Techniques 
8.1 An Overview of Sequences and Series
8.2 Sequences
8.3 Infinite Series
8.4 The Divergence and Integral Tests
8.5 The Ratio, Root and Comparison Tests
8.6 Alternating Series 
Chapter 9—Sequences and Infinite Series 
9.1 Approximating Functions with Polynomials
9.2 Properties of Power Series
9.3 Taylor Series
9.4 Working with Taylor Series 
Chapter 10—Power Series 
10.1 Parametric Equations
10.2 Polar Coordinates
10.3 Calculus in Polar Coordinates
10.4 Conic Sections 
*This schedule is subject to change at the discretion of the instructor.
Last Modified:
August 23, 2019
